2.6W Mono Class-D Audio Amplifier

Features

- Supply Voltage Range: 2.5~5.5V
- High Efficiency up to 90%
- Low Power consumption
 - Shutdown Current: 1uA
 - Quiescent Current: 3mA
- High Audio Performance
 - Maximum THD+N: 0.01%
 - Maximum Output Power: 2.6W
- Low-EMI: Unique PWM Control Method
- Resistive Gain Control : 6dB~24dB
- Short & Thermal Protection
- "Pop and Click" Noise Suppression
- Pb-Free Packages are Available

Descriptions

The CPA011M is a high efficiency filter-free class-D audio power amplifier of delivering 2.6W of continuous average power to a 4Ω from a 5.5V supply in a Bridge Tied Load (BTL) configuration. Under same conditions, the amplifier can provide 1.4W to an 8Ω BTL load with less than 1% THD+N. For portable applications it offers space and cost savings because no output filter is required when using inductive speakers. With more than 90% efficiency and very low shutdown current, it increases the life time of your battery.

The CPA011M processes analog inputs with the unique pulse-width modulation method that lowers output noise and EMI. The gain can be reduced by external input resistors. The CPA011M provides thermal and short circuit protection.

Applications

- Cellular Phones
- MP3 Players
- PDAs and Smart Phones
- Portable Audio

Application Circuit

Package Info.

8 DFN 2x2 mm available

(The smallest molded package in the world)

EMI Spread Spectrum

- 1 -

Cesign

Absolute Maximum Ratings

Over operating free-air temperature range unless otherwise noted

Symbol	Rating	Max	Unit
VDD	Supply Voltage	6	V
IP/IM	Input Voltage	-0.3 to VDD+0.3	V
T _A	Operating free-air temperature range	-40 to 85	°C
TJ	Operating junction temperature range	-40 to 150	°C
Tstg	Storage temperature range	-65 to 85	°C
	ESD Protection		
	Human Body Model (HBM) (Note 1)	>2000	V
	Machine Model (MM) (Note2)	>200	
	Charged Device Model(CDM)	>500	

Stresses exceeding those listed under absolute maximum ratings may cause permanent damage to device.

1. Human Body Model: 100pF discharged through a 1.5k resistor following specification JESD22/A114.

2. Machine Model: 200pF discharged through all pins following specification JESD22/A115.

Recommended Operating Conditions

Symbol	Rating	MIN	MAX	Unit
VDD	Supply Voltage	2.5	5.5	V
VIH	Low-level input Voltage (EN)	1.3	VDD	V
VIL	Low-level input Voltage (EN)	0	0.3	V
VIC	Common mode input voltage	0.5	VDD-0.8	V
T _A	Operating free-air temperature range	-40	85	°C

- 2 -

Electrical Characteristics

Parameter	Symbol	Conditions	MIN	TYP	MAX	Unit
Operating Supply Voltage	VDD	T _A =-40 °C to +85 °C	2.5		5.5	V
Supply Quiescent Current	I _Q	VDD=5.5V, No load		3.3	5	mA
		VDD=3.6V,No load		2.6	3.5	
		VDD=2.5V,No load		2.3	3	
Shutdown Current	I_{SD}	VDD=2.5V to 5.5V		1	5	μA
Switching Frequency	F _{sw}	No input	330	380	480	kHz
Output offset Voltage	V _{oc}	Inputs ac grounded, $A_V=6dB$			25	mV
Power Supply Rejection Ratio	PSRR	VDD=2.5 to 5.5V			-75	dB
Common-mode Rejection Ratio	CMRR	Inputs shorted together VDD=2.5 to 5.5V			-60	dB

Operating Characteristics

Parameter	Symbol	Conditions		TYP	MAX	Unit
Output power	P _{OUT}	Load=4 Ω +22uH, Fin=1kHz,	VDD=2.5	0.5		
		(Note.1)	VDD=3.6	1.1		
			VDD=5.5	2.6		\A/
		Load=8 Ω +22uH, Fin=1kHz,	VDD=2.5	0.3		vv
			VDD=3.6	0.7		
			VDD=5.5	1.6		
Total harmonic	THD+N	VDD=5.5V, Fin=1kHz, Load=	=8Ω, P _{OUT} =0.5W	0.02	0.1	
distortion plus		VDD=3.6V, Fin=1kHz, Load=	=8Ω, P _{OUT} =0.3W	0.02	0.1	%
noise		VDD=2.5V, Fin=1kHz, Load=	=8Ω, P _{OUT} =0.2W	0.02	0.1	
Signal-to-noise	SNR	VDD=5V, POUT=1W, Load=	8 Ω , A weighted	96	92	dB
ratio		noise	-			
Output voltage	V _N	VDD=3.6V, Fin=20Hz to	No weighting		50	
noise		with C _{IN} =1uF	A weighting		40	μv _{RMS}
Efficiency	η		VDD=5.5V		91	
		Load=8 Ω	VDD=3.6V		90	
			VDD=2.5V		89	0/2
		Lood-40	VDD=5.5V		86	70
		$LOdU = 4\Omega$	VDD=3.6V		84	
		(NOLE.1)	VDD=2.5V		81	
Thermal Shutdown Temperature	T_{SD}	Inputs ac grounded, A _v =6dB		150		°C

(Note.1) In the case of 4-Ohm load speaker, the package thermal dissipation is not enough. CPA011M is recommended to use higher impedance load speaker if the PCB artwork is not considered thermal dissipation.

Block Diagram

Pin Description

VDD IP IM EN CPA010M	J_OP J_VSS J_OM J_VDD	11M YYWW	11M: Product Marking YYWW: Year/Work Week Laser Mark
----------------------------------	--------------------------------	-------------	--

Name	I/O	PIN	Description
VDD	Ι	1,5	Power Supply Voltages
VSS	I	7	Power Ground Voltages
IP	Ι	2	Positive Audio Signal
IM	I	3	Negative Audio Signal
OP	0	8	Positive Output
OM	0	6	Negative Output
EN	Ι	4	Enable Control Signal(Active High)

Power On/Off Sequence

<Power off sequence>

Turn on time of the audio amplifier is not longer than 1ms.

- 4 -

Typical Performance Characteristics

1. THD+N vs. Output Power

2. THD+N vs. Frequency

Cesign

20m

50m 100m

200m 500m1

OUTPUT POWER [W]

2 4

3. Output power vs. Efficiency

4. Frequency Response

FREQUENCY RESPONSE

APPICATION INFORMATION

GENERAL AMPLIFIER FUNCTION

The CPA011M is a fully differential input/output amplifier and features a filter-less self oscillation (not using internal oscillator) and spread spectrum modulation scheme. The CPA011M requires input resistors for gain selections. The differential outputs (OP and ON) switch at about 380KHz from VDD to GND. When there is no input signal, the duty cycle of two outputs (OP and ON) is 50% in phase. Two signals cancel each other because of differential output. When there is input signal, the each pulse width of output signals (OP and ON) is changing depending on input signal amplitude. The difference of two output signals yields the differential output voltage.

SPREAD SPECTRUM and SELF-OSCILLATON MODULATION

The CPA011M features a filter-less spread spectrum and self-oscillation modulation scheme that eliminates the need for output filter. The switching frequency varies by -40% below 400KHz frequency depending on input signal amplitude, improving EMI emissions radiated by the speaker, associated cables and traces.

The spread spectrum architecture of CPA011M spreads the energy across larger bandwidth. So switching carrier frequency does not affect the audio reproduction.

And self-oscillation scheme does not require internal oscillation, so CPA011M is effectively circuit designed.

- 7 -

INPUT CIRCUIT CONFIGURATION

Differential Input Configuration

Figure2 shows the normal CPA011M differential input configuration. But if the design uses a differential source that is biased with common- mode input voltage range, input coupling capacitors are not required.

[Fig2. CPA011M Differential Input Config.]

The external resistors must be placed close to IP and IM for gain setting. Default gain Av (R1 =0 Ω) is 24dB (x16).

$$A_V = \frac{2 \times 80 K\Omega}{(R1 + 10 K\Omega)}$$

Single Ended Input Configuration

The CPA011M can be configured as a single-ended amplifier but input capacitors are needed to block any DC at input terminal. The value of input capacitor is important to consider as it directly affects the low frequency performance.

[Fig3. CPA011M Single-Ended Input Config.#1]

To improve audio sound quality at singleended input configuration, IM(Negative input pin) had better connect with ground of CODEC chip. That is, noise signal of CODEC chip flows to audio amplifier, then the noise signal at CPA011M can be crossly cancelled.

[Fig4. CPA011M Single-Ended Input Config.#2] If IM is separately go thin, the noise signal of CODEC chip to IP(Positive input pin) can be amplified.

If IM is separately grounded with CODEC in) can be amplified.

– Cesign

- 8 -

Input Filter Design

Input filter can be sometimes be designed for reducing current consumption and improving sound quality because there are generally the constraints of overall system and the actual frequency band of interest.

[Fig5. CPA011M Filter Design Config.]

Althougn high-fidelity audio reproduction needs a flat gain response between 20Hz and 20KHz, portable devices such as cellular phone need only limited frequency audio band reproduction because of poor frequency response of speaker unit below 150Hz.

$$f_{LF} \approx \frac{1}{2\pi R_1 C_1}$$
 $f_{HF} \approx \frac{1}{2\pi (R_i + R_2)C_2}$

The value of Ri is 10K Ω

- 9 -

OUTPUT CIRCUIT CONFIGURATION

Output Line Placement

The CPA011M does not require an output filter (filter-less scheme) and has the high EMI immunity characteristics.

[Fig6. Output Line Description to reduce EMI]

To reduce the EMI, it is important that speaker line is twisted, shielded or closely paralleled.

Output Filter

But if failing radiated emission testing without LC filter, a ferrite bead can be often used in the design. The traces from amplifier to speaker must be usually shorter because the line is functioning like RF antenna.

impedance at high frequency, but very low impedance at low frequencies.

If choosing a ferrite bead, choose one with high

- 10 -

Cesign

ANOTHER IMPLEMENTATION CONSIDERATION

The external components like resistor and capacitor must be closely placed to audio amplifier. The traces between amplifier and external components distort the audio input signal and affect the power drop or fluctuation.

The use of power and ground planes will give the best THD+N performance. While reducing trace resistance, the parasitic capacitors between power and ground help to filter power supply line. The output signal line must be considered to be safely separated from another signal line. Sometimes the output line affects badly another chip's signal lines.

OUTPUT MEASUREMENT ENVIRONMENT

[Fig8. Test Setup Environment]

REFERENCE EVALUATION BOARD LAYOUT and SCHEMATIC

EVM Board component placement and Board Layer

< Top Placement >

< Top Layer Routing >

Parts Descriptions

Parts	Parameter	Descriptions
C1/C2	Ceramic 1uF 0603 X7R Top place	Input DC coupling
C3	Ceramic 0.1uF 0603 X7R Top place	Power noise Reduction
C4	Ceramic 10uF 0603 X7R Top place	Power noise reduction
R1/R2	5% Chip Type	Gain Control Resistor
CLPF1/CLPF2	Ceramic 4.7nF 0603 X7R Top place	Measurement filter
RLPF1/RLPF2	Chip 1K Ω 0603 5% Top Place	Measurement filter

0.85 ± 0.05

SIDE VIEW

PHYSICAL DIMENSIONS

RECOMMENDED LAND PATTERN

PACKAGE OF OUTLINE

DEMENSIONS are IN MILLIMETERS / DIMENSIONS IN () FOR REFERENCE ONLY

Cesign

Revision Table			
Rev No.	Date	Notes	
Rev0	2007.12	The first preliminary datasheet issued	
Rev0.1	2007.12.26	Application note attached	
Rev0.2	2008. 2. 4	Page 1. Application Circuit Diagram changed,	
		Page 7. External Component guide added	
Rev0.3	2008. 2.26	Page13 "REFERENCE EVALUATION BOARD LAYOUT and	
		SCHEMATIC" is added	
Rev0.4	2008. 3. 12	Pin #1 VSS is changed to VDD for performance upgrade	
Rev0.5	2008. 5. 21	EMI test Result, Making information, Physical Dimensions	
		are added	
Rev0.6	2008. 8. 7	$\overline{\text{SD}} \rightarrow \text{EN}$ Pin Description changed	
Rev0.7	2008. 9. 18	Power On/Off Diagram Added	
Rev0.8	2010. 2. 3	THD+N, SNR, Load Condition Changed, Some items	
		added typical value	
Rev0.9	2011. 4. 6	THD+N vs Output Power, THD+N vs Frequency, Output	
		Power vs Efficiency, and Frequency Response graph	
		added.	